Challenges in Credit Risk Analytics

Prof. dr. Bart Baesens

Department of Decision Sciences and Information Management K.U.Leuven (Belgium)

Vlerick Leuven Ghent Management School (Belgium)

School of Management University of Southampton (United Kingdom)

Bart.Baesens@econ.kuleuven.be

Twitter: DataMiningApps

Facebook: Data Mining with Bart

Overview

- Introduction
- Data Quality
- Model requirements
- Model discrimination versus calibration
- Model validation

Strategic impact of credit risk analytics

- More than ever before, analytical models steer strategic decisions of financial institutions!
- Minimum equity (buffer capital) and provisions a financial institution holds are directly determined, a.o., by
 - credit risk models
 - market risk models
 - operational risk models
 - fraud risk models
 - insurance risk models
 - model risk metamodels (?)
 - **—** ...
- Analytics typically used to build all these models!
- Often subject to regulation (e.g. Basel II/Basel III, Solvency II, ...)!
- Model errors directly affect profitability, solvency, shareholder value, macro-economy, ..., society as a whole!

Traditional Analytics: Performance benchmarks

Context	Number of Characteristics	AUC ranges
Application Credit Scoring	10-15	70%-85%
Behavioural Credit Scoring	10-15	80%-90%
Fraud detection (insurance)	10-15	70%-90%
Churn detection (Telco)	6-10	60%-80%

BAESENS B., VAN GESTEL T., VIAENE S., STEPANOVA M., SUYKENS J., VANTHIENEN J., Benchmarking State of the Art Classification Algorithms for Credit Scoring, *Journal of the Operational Research Society*, 2003.

VERBEKE W., DEJAEGER K, MARTENS D., HUR J., BAESENS B., New insights into churn prediction in the telecommunication sector: a profit driven data mining approach, *European Journal of Operational Research*, 2011.

Improving Traditional Analytics: 2 strategies

- Strategy 1: Use complex modeling techniques
 - E.g. neural networks, support vector machines, random forests, ...
 - Pro: powerful models (e.g. universal approximation)
 - Con: loss of interpretability, marginal performance gains
- Strategy 2: Enrich your data
 - External data (FICO score, bureau data, ...)
 - Data quality!
 - Pro: model still interpretable
 - Con: additional resources needed (ICT)

Data Quality

- GIGO principle
 - Garbage in, Garbage out; messy data gives messy models
- In many cases, simple analytical models perform well, so biggest performance increase comes from the data!
 - Baesens et al., 2003; Van Gestel, Baesens et al., 2004
 - Holte, 1993
- Importance of Master Data Management and Data quality programmes!
- "The best way to improve the performance of an analytical model is not to look for fancy tools or techniques, but to improve DATA QUALITY first"
- Baesens B., It's the data, you stupid!, Data News, 2007.

Example data quality criteria

- Data accuracy
 - E.g., outliers
 - Age is 300 years versus Income is 1.000.000 Euro (not the same!)
- Data completeness
 - Are missing values important?
- Data bias and sampling
 - Try to minimise, but can never totally get rid of
- Data definition
 - Variables: what is the meaning of 0?
 - Target: fraud, churn, default, customer lifetime value (CLV),
- Data recency/latency
 - Refresh frequency

Data Quality Criteria (Moges, Lemahieu, Baesens, 2011)

Cat.	DQ dimensions	Definitions
	Accuracy (AC)	The extent to which data are certified, error-free, correct,
္ပ	011 111	flawless and reliable
Intrinsic	Objectivity	The extent to which data are unbiased, unprejudiced,
ntr	(OBJ)	based on facts and impartial
	Reputation	The extent to which data are highly regarded in terms of
	(REP)	its sources or content
	Completeness	The extent to which data are not missing and covers the
	(COM)	needs of the tasks and is of sufficient breadth and depth of the task at hand
	Appropriate	
व	Appropriate- amount (APM)	The extent to which the volume of information is appropriate for the task at hand
xt.	Value-added	The extent to which data are beneficial and provides ad-
ıte	(VAD)	vantages from its use
Contextual	Relevance	The extent to which data are applicable and helpful for
	(REL)	the task at hand
-	Timeliness	The extent to which data are sufficiently up-to-date for
	(TIM)	the task at hand
-	Actionable	The extent to which data is ready for use
	(ACT)	
	Interpretable	The extent to which data are in appropriate languages,
	(INT)	symbols, and the definitions are clear
_	Easily-	The extent to which data are easily comprehended
Representation	understandable	
nta	(EU)	
ese	Representational-	The extent to which data are continuously presented in
pro .	consistent (RC)	same format
Re	Concisely-	The extent to which data is compactly represented, well-
	represented	presented, well-organized, and well-formatted
	(CR)	The extent to which data is reconcilable
	Alignment (AL)	
	Accessibility	The extent to which data is available, or easily and
SS	(ACC) Security (SEC)	swiftly retrievable The extent to which access to data is restricted appropri-
Access	security (SEC)	ately to maintain its security
A	Traceability	The extent to which data is traceable to the source
	(TRA)	The extent to which data is traceable to the source
	(IIII)	

Survey: data quality for credit risk analytics

- 50+ banks participating world-wide
- Focus on credit risk analytics
- Initial findings:
 - Most banks indicated that between 10-20 percent of their data suffer from data quality problems
 - Manual data entry one of the key problems
 - Diversity of data sources and consisent corporate wide data representation main challenge for data quality
 - Regulatory compliance key motive to improve data quality
- Moges, Lemahieu, Baesens, 2011

Data quality: short term versus long term impact

- No short term solution
 - Deal with in a statistical way using e.g. data transformations
 - Outlier truncation, missing value imputation, data enhancement
 - Buy external data (data poolers!)
- Structural solutions in the long term
 - Re-design data entry processes
 - Master data management

Analytic Model Requirements

Statistical performance

- Lift curve, ROC curve, Gini coefficient, ...
- R-squared, MSE, ...

Interpretability + Justifiability

- Very subjective, but CRUCIAL!
- Often need to be balanced against statistical performance

Operational efficiency

— How much effort is needed to evaluate/monitor/re-train the model(s)?

Economical cost

- What is the cost to gather the model inputs and evaluate the model?
- Is it worthwhile buying external data and/or models (e.g. BKR score)?

Regulatory compliance

- In accordance with regulation and legislation
- E.g., Basel II\Basel III, Solvency II

Model discrimination versus Model calibration

Model discrimination

- Rank order (score) entities with respect to likelihood of event occurring
- Examples
 - Rank order customers in terms of likelihood to default on their obligation
 - Bart is more risky to default than Victor!
- However, despite traditional focus in data mining, this is no longer sufficient!
- We need to know the <u>EXACT</u> probability of the event occurring!

Model calibration

- Provide well-calibrated and accurate projected probabilities based on
 - Historical data
 - Expectations with respect to the future (e.g. GDP contraction versus expansion)
- Losses only make sense in an <u>ABSOLUTE</u> way!
- Example
 - P(Bart defaults)=0.90; P(Victor defaults)=0.75

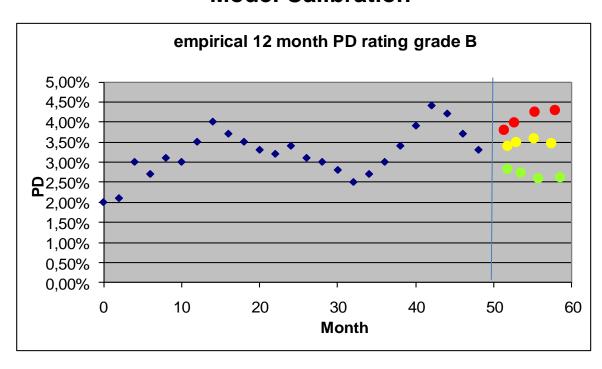
Model discrimination versus Model calibration

Model Discrimination

Characteristic Name	Attribute	Scorecard Points
AGE 1	Up to 26	100
AGE 2	26 - 35	120
AGE 3	35 - 37	185
AGE 4	37+	225
GENDER 1	Male	90
GENDER 2	Female	180
SALARY 1	Up to 500	120
SALARY 2	501-1000	140
SALARY 3	1001-1500	160
SALARY 4	1501-2000	200
SALARY 5	2001+	240

Example application scorecard

Model Calibration

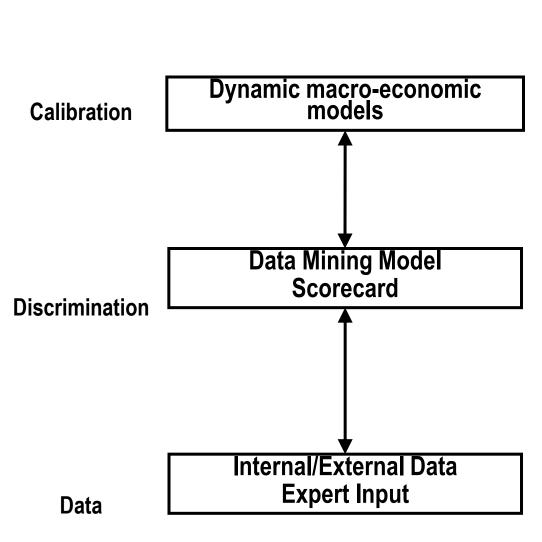


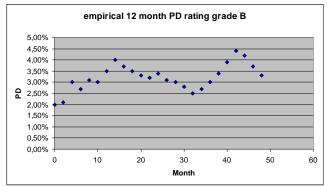
Historical probability of default (PD) calibration for customer segment B!

Model Calibration: example approach

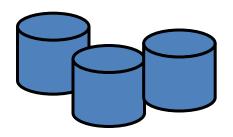
- Analytical models typically built using a snapshot at a given period in time!
- Cluster data mining model outputs (e.g. scores) into pools
 - Scores are too fine granular anyway!
 - Essentially, a semi-supervised learning exercise
 - Score 200-300: pool A; score 301-500: pool B, score 501-650: pool C, ...
- For each pool, calibrate event probability using
 - Time series analysis techniques (ARIMA, VAR, ...)
 - Dynamic models/Markov Chains
 - Simulations
 - Projected macro-economic scenarios
- Model transitions between pools
 - Gives an idea about customer volatility/model stability
 - Do I have a point-in-time (PIT) or through the cycle (TTC) analytical model?

Summarising: Model architecture





Characteristic Name	Attribute	Scorecard Points
AGE 1	Up to 26	100
AGE 2	26 - 35	120
AGE 3	35 - 37	185
AGE 4	37+	225
GENDER 1	Male	90
GENDER 2	Female	180
SALARY 1	Up to 500	120
SALARY 2	501-1000	140
SALARY 3	1001-1500	160
SALARY 4	1501-2000	200
SALARY 5	2001+	240



Side benefit: stress testing

- By introducing the macro economy into the model, one can do stress testing
 - "evaluate the potential impact on a firm of specific adverse events and/or movements in a set of financial variables" (BIS, 2005)
- Sensitivity analysis
 - Single variable versus multiple variables
 - E.g. assume all credit scores decrease by 5%
- Scenario analysis
 - Historical or hypothetical
 - E.g. 3 successive years of GDP contraction, house prices drop by 5%, ...
 - Could be a 1/25 years event (e.g. in the United Kingdom)
- Common challenges/problems:
 - Lack of historical data
 - Correlations break down during stress (need to have data on downturn periods)
 - Integrate risks
 - What is stress??
 - What to do with the results? Strategic impact?

Model Risk

- "Essentially, all models are wrong, but some are useful" (George E. P. Box, 1987)
- Models are not perfect, some are actually VERY bad, but what's the alternative???
 - Default risk/fraud prediction: good performance (Gini coefficients around 50 to 80%)!
 - Loss/LGD prediction: <u>awful</u> performance (R² of 0 .30 already great!)
- Model imperfection is typically dealt with by
 - Conservative parameter calibration
 - aka economic downturn calibration
 - E.g. assume statistically estimated probability of default is 3%.
 - Use 5% for strategic decisions to capture model risk!
 - Create equity buffer/provisions for model risk
 - Hard to quantify!

Model monitoring

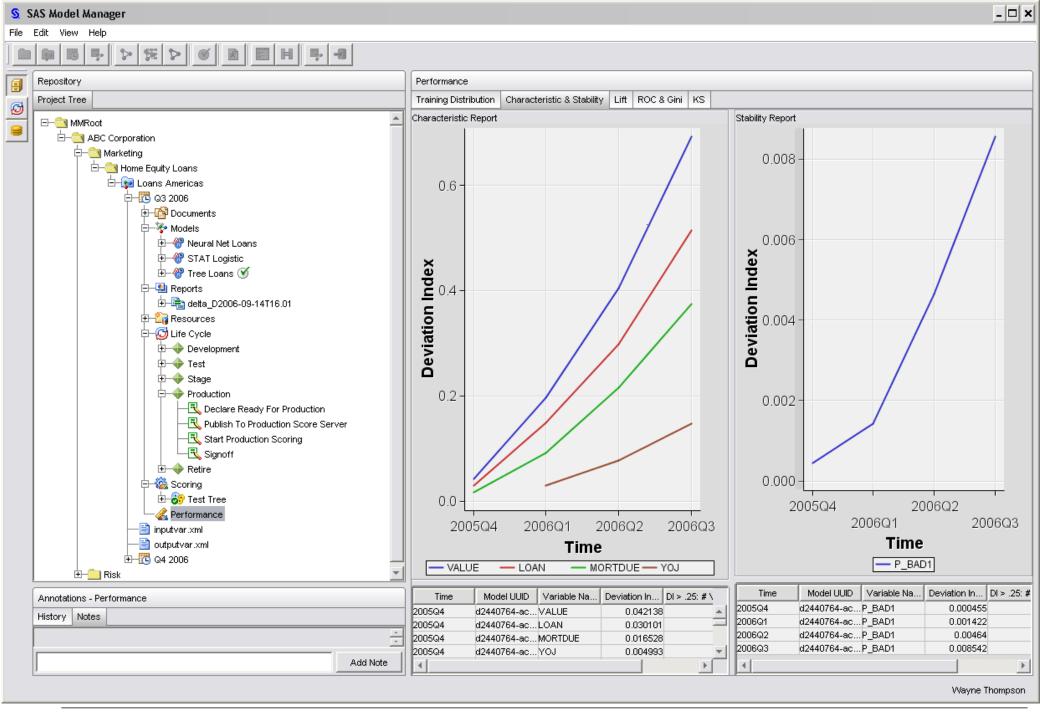
- Why data mining models may degrade in performance?
 - Sample effects (models estimated on limited samples)
 - Macro-economy (downturn versus upturn)
 - Internal effects (e.g. strategy change, population drift, M&A)
 - In reality: a very nice (?) mixture of these!
- Need to constantly monitor outcomes of models
- Crucial since models more and more steer strategic decisions of the firm (cf. supra)
 - E.g. equity calculation in a Basel II/Solvency II environment
 - Risk based pricing
- Quantitative versus Qualitative validation

Model validation

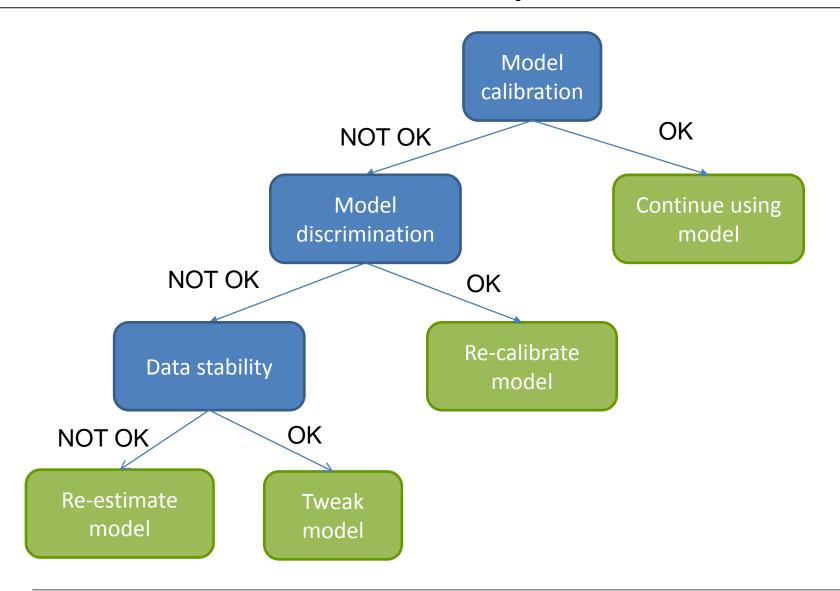
- Quantitative validation
 - Backtesting
 - Benchmarking
- Qualitative validation
 - Data quality
 - Model design
 - Documentation
 - Corporate governance and management oversight

Backtesting

- Contrasting ex-post realised numbers with ex-ante predictions
- Using statistical tests and performance measures
- Examples
 - Use binomial test for comparing default/fraud rates
 - Monitor decrease in AUC (Gini) over time
- Challenges
 - Which test statistics to use?
 - Which confidence levels to adopt?
 - How to deal with correlated behavior (portfolio effects)?
 - When to take action and what action?



Action plans



Key lessons learnt

- The best way to improve the performance of an analytical model is to improve <u>data quality</u> first
- A good model does more than giving good statistical performance (<u>model requirements</u>)!
- Discrimination versus calibration: bring the <u>macro-economy</u> into the model!
- Introduced the idea of model risk
- Discussed the need for <u>model validation</u> and <u>action plans</u>!

References

- Moges H.T., Dejaeger K., Lemahieu W., Baesens B., A Total Data Quality Management for Credit Risk: New insights and challenges, *International Journal of Information Quality*, forthcoming, 2012.
- Verbraken T., Verbeke W. Baesens B., A Novel Profit Maximizing Metric for Measuring Classification Performance of Customer Churn Prediction Models, *IEEE Transactions on Knowledge and Data Engineering*, forthcoming, 2012.
- BAESENS B., MARTENS D., SETIONO R., ZURADA J., White Box Nonlinear Prediction Models, editorial special issue, IEEE Transactions on Neural Networks, Volume 22, Number 12, pp. 2406-2408, 2011.
- Baesens B., Mues C., Martens D., Vanthienen J., 50 years of Data Mining and OR: upcoming trends and challenges, *Journal of the Operational Research Society*, Volume 60, pp. 16-23, 2009.
- Glady N., Croux C., Baesens B., Modeling Churn Using Customer Lifetime Value, European Journal of Operational Research, Volume 197 Number 1, pp. 402.411, 2009.
- Martens D., Baesens B., Van Gestel T., Decompositional Rule Extraction from Support Vector Machines by Active Learning, *IEEE Transactions on Knowledge and Data Engineering*, Volume 21, Number 1, pp. 178-191, 2009.
- Setiono R., Baesens B., Mues C. Recursive Neural Network Rule Extraction for Data with Mixed Attributes, *IEEE Transactions on Neural Networks*,19 (2),pp.299-307, 2008.
- Baesens B., Setiono R., Mues C., Vanthienen J., Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation, *Management Science*, Volume 49, Number 3, pp. 312-329, March 2003
- See <u>www.dataminingapps.com</u>

Bart's Book

OXFORD Rating **CREDIT RISK** MANAGEMENT Basic concepts: financial risk components, rating analysis, models, economic and regulatory capital TONY VAN GESTEL **BART BAESENS**

		4		4
'n	n	TΩ	n	ts

					3.6	Rating philosophy	14
					3.7	External rating agencies	14
					3.8	Rating system at banks	15
					3.9	Application and use of ratings	16
		ledgements	Xi		3.10	Limitations	16
Iı	troduc	tion	xiii				
C	hapter	by chapter overview	XV	4.	Risk	modelling and measurement	16
					4.1	Introduction	16
1	Ban	k risk management	1		4.2	System life cycle	17
	1.1	Introduction	1		4.3	Overview of rating systems and models	17
	1.2	Banking history	2		4.4	Data definition and collection Development	20 25
	1.3	Role of banks	9		4.6	Implementation	26
					4.7	Application and follow-up	26
	1.4	Balance sheet	17		4.8	Validation, quality control and backtesting	26
	1.5	Sources of risk	23		4.0	validation, quality control and backtesting	20
	1.6	Risk management	38	5.	Port	folio models for credit risk	27
	1.7	Regulation	52		5.1	Introduction	27
	1.8	Financial products	59		5.2	Loss distribution	27
					5.3	Measures of portfolio risk	27
2	Cre	dit scoring	93		5.4	Concentration and correlation	28
					5.5	Portfolio model formulations	29
	2.1	Introduction	93		5.6	Overview of industry models	30
	2.2	Scoring at different customer stages	95		5.7	Basel II portfolio model	31
	2.3	Score types	105		5.8	Implementation and application	32
	2.4	Credit bureaus	109		5.9	Economic capital and capital allocation	32
	2.5	Overrides	111				
	2.6	Business objectives	112	6.	Base	III	34
	2.7	Limitations	113		6.1	Introduction	34
					6.2	Bank capital	35
3	Cre	dit ratings	115		6.3	Pillar 1 (minimum capital requirements)	35
	0.00	an rungs	110		6.4	Pillar 2 (supervisory review process)	41
	3.1	Introduction	115		6.5	Pillar 3 (market discipline)	43
	3.2	Rating and scoring systems	117		6.6	Information technology aspects	44
	3.3	Rating terminology	118		6.7	Market impact	45
	3.4	A taxonomy of credit ratings	121		6.8	Future evolution	47
	3.5	Rating system architecture	143	D -	faran-	an.	40
	2.3	rating system are intecture	143		ferenc	es	48 51
				Ina	ıeх		31

viii Contents